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Renormalization-group treatment of a pinning-depinning 
transition in an incommensurate structure 
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t Max-Planck-lnstitut fur Festk6rperfomhun& Heisenbergstlase I, P7ooO Stuttgm 80, 
Federal Republic of Germany 
t A F loffe Physim-Technical Institute, 194021 SI Petersburg, Russia 
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AbstmL A new type of r e n o m a l i t i o n - p u p  approach h suggested 10 treat the 
mucture and pmpenies of the Frenkel-Kontom (discrete sinffiordon) model ground 
s t a m  Special attention h devoted to the incommensurate stmctures where the transition 
ly &king of analyticity of the hull function (pinningdepinning transition) cccm when 
the strength of the periodic potential is varied. The method gives for a particular 
mmmmensurability-the ‘golden mean’ one-a Critical value of (he potential strength 
me-and-a-half times lager than the aact value obtained by Aubry d d by numerical 
methods. The aitical index of ”elation length minddes within a few per Qnt accuraq 
with i ts  exact value 

1. Introduction 

There exist a number of physical systems where a great variety of periodically 
and quasi-periodically modulated structures may be realised as ground states. 
Examples are: chargedensity waves in crystals with Peierls distortion 11-31, magnetic 
flux coniigurations in a periodically inhomogeneous Josephson junction [4], an 
adsorbed monolayer on a crystal surface [5, q, vortex structures in a layered (e.g. 
high-temperature) superconductor p], and magnetics with anisotropic competing 
interactions [%lo]. In each case the period of modulation is governed by some 
sp&c parameter-the density of electrons in a charge-density wave, the average 
magnetization in a Josephson junction and in a layered superconductor, the density 
of adatoms in a monolayer--.or by its thermodynamically conjugate quantities: the 
chemical potential, the magnetic field and the pressure respectively. 

The FrenkekKontorova (x) model (11-131 serves as a standard tool to describe 
such systems [14, U]. The usual way to obtain analytical resulls in this model 
was primarily the continuous approximation [E!, 131, sometimes with variations 
such as e.g. continuous approximation for the Mth-order commensurability [lq. 
Aubry a a2 [16, 171 have shown that one essential feature of the wide class of 
discrete models (including the ~ l c  one) with two competing length scales cannot be 
described properly in the continuous approximation. This is the transition between 
locked and unlocked configurations when the pinning strength parameter is varied. 
A sophisticated approach to study this transition is based on the analysis of the 
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associated standard map [18, 191. The most complete and accurate results for the FK 
model have recently been obtained in this way by MacKay with the renormalization 
of the standard map [18]. 

Here we suggest an attempt at a simple analytical approach to the problem based 
on the natural and physical picture of the ground state as some hierarchy of defects. 
’I%& approach is the renormalization group (RG) of a type something like the real- 
space RG. Though wi th i  the framework of the RG approach in its present form only 
rough estimates of the critical quantities are possible, we believe it gives us somewhat 
deeper insight into the structure of incommensurate quasi-periodic states of discrete 
systems. 

The formulation of the FX model and of its ground-state problem is given in 
section 2 The general description of various ground states in terms of Aubry’s hull 
function 116, 17 is also presented. The qualitative description of the ground state as 
a hierarchy of defects is given in section 3. The idea of transition to a new set of 
variables-namely klnk ones with the renormalid energy functional-is formulated 
in section 4. In section 5 we present the transition to the kink variables on the basis 
of the continuous approximation. The formulae for the RG transformations under 
various assumptions are obtained in section 6. The tixed cycles and p in t s  and the 
behaviour of the transformation in their neighbourhoods are discussed in section 7. 
The conclusions are formulated in section S 

V N prigodin and A N Samukhin 

2. Formulation of the problem 

The energy functional for the FK chain may be written as follows: 

with 

~ ( 4 )  = [ 1 / ( 4 ~ ~ ) 1 ~  - cos(w)l .  (2.2) 

Here the variables 4 j ,  -w < $ j  < +w, are defined on all the sites of the chain 
with numbers j, and X is the strength of the periodic potential. According to Aubry 
et nl [16] let us set the ground-state problem in the following way: one should find 
the minimal energy configuration among those with some definite value of the ‘mean 
phase difference’ 0: 

In a wide class of discrete models including the FK one all the ground states with 
a given value of the mean phase difference CP may be written using the hull function 
[I61 g(+ ,@)  as 

4j = S W  + A @ ) .  0.4) 

The hull function g ( r )  (Q is treated as a parameter) has the following properties: (i) 
it is monotonically increasing, g ( q )  > g(z2) if zl > z2; (ii) g(+ + 1) = g(z)  + 1, 
or g(z)  = I + h ( x ) ,  where h ( z )  is periodic with period 1. For the FK model 
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(2.1), g(r,Ip) has two additional properties: (i) g(z,Ip + 1) = g(z,@); and (iv) 
g(-z,@) = -g(z,@). The first of the latter is the consequence of the quadraticity 
of the first term in the sum on the RHS of (2.1), and the second of the property 
V ( + )  = V ( + )  in (22). The parameter p was introduced into (24) to describe the 
degeneracy of the ground state. 

If Q1 is a rational number, @ = M / L ,  with hl and L being integers, then g(x) 
is a discontinuous function with L jumps and L flat steps in between them within the 
unit interval of I. The ground state is L-fold degenerate commensurate in this case. 
Of course, there is no Goldstone mode and this state is always pinned. 

The situation is different for incommensurate ground-state configurations with 
irrational values of the main phase difference Ip. For small values of the potential 
strength X one Can prove using perturbation theory [17] that the hull function is 
a continuous analytic function of x. This is likely U, correspond to the unpinned 
ground-state configurations. Indeed one such configuration may be continuously 
translated into another one by varying the degeneracy parameter 0. On the other 
hand, if X is large, X B 1, the cosine potential @2) may be substituted by the 
piecewise-periodic parabolic one [ZO]. In the latter case the hull function can be 
found explicitly and appears to be a discontinuous one. The discontinuity pints are 
located at I = lIp + m, where 1 and m are arbitrary integers; hence they are dense 
on the real axis. All the jumps are finite at the discontinuity points, and consequently 
the ground state is pinned. 

3. The ground state BS a hierarchy of defects 

The simplest example of a kink-type defect is the well known sineGordon kink 
soliton. If @ = 0 the ground-state configuration is simply c $ ~  = n, n being integer. 
The elementary excitation here is a solitary kink, i.e. the stationary configuration with 
the following properties: qjj + n as j + -CO, and 4j -+ n f 1 as j -, +CO. 

The main difference between kinks in FK and sineGordon models is that, while 
in the latter case the Oentre of the kink may be situated at any point of the chain, in 
the former the kink Oentre should be in the middle between two sites and every two 
neighbouring positions are separated by the Peierls-Nabarro energy barriers [lq. 

The ground-state configuration for Ip = 1/N, where N is integer, is a periodic 
one: 

4 j + N  = 4j + 1. 

One can treat this configuration as a sequence of equidistant kinks with interkink 
distances equal to N .  The configuration is N-fold degenerate. Strictly speaking, to 
describe the configuration as a soliton lattice one should suppose that the distance 
between kinks is larger than the kink length - i.e. X’12N >> 1. However, 
further on we shall use the soliton picture in a loose sense. The ‘elementary phase 
defect’ within the above-described ground-state configuration for Ip = l/N,.or the 
second-generation soliton, is the stationary configuration +?) with the following 
property: there exists a ground-state configuration with Ip = 1/N, +jd, such that 
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This configuration can be loosely treated as a kink lattice with all the distances 
between neighbouring kinks equal to N except one that is equal to N f 1. 

V N Prigdin and A N Samukhin 

Let us consider the ground-state configuration for @: 

@ = l / ( N l f l / N z ) =  Nz/(NINz&l).  0.3) 
Here we have N2 kinks per period, i.e. per NIN2 f 1 sites. One can treat this 
configuration as an equidistant sequence of second-generation solitons. Here we 
have one such soliton for NINz i 1 sites or, equivalently, for Nz first-generation 
solitons (simple kinks). 

Further generalization is obvious. For every commensurate ground state with 
mean phase difference 

@(') = M,,,/ L,,, = l/[Nl f 1/( N, f .. . & l /N8) ...I (3.4) 
where N 2 2 are naturals, we may introduce the elementary phase defect as follows: 
If +j is the ground-state configuration with mean phase difference then, in 
accordance with Aubry's theorem, it may be represented through the hull function g 

as +e) 3 = g ( j @ ( * )  + p, @(*)). The defect configuration +yvd) is the minimal energy 
one with the property 

as j + - m  
as j ...+ +CO 

. (3.5) g ( j W  + p , W )  +y + { g ( j W  +L?& l / L * , , , @ @ ) )  

The minimal energy configuration is defined as a stationaty one with the following 
property [16]: any change of any finite set of variables +I necessarily increases energy 

Introducing one defect of (3.5) type per N,,, periods into the 4y) ground-state 
configuration, one obtains the (s + 1)th-order ground-state configuration 4p1) with 
mean phase dxerence @('+I): 

ip(s+l) = M .+z/L,+z = I/ {NI f 1/ [Nz* ... * 1/(N# f 1/NS+i)...I}. (3.6) 

'Qking the limit s -+ CO, one can describe an incommensurate state as an infinite 
hierarchy of defects. The mean phase difference in this ground state is an irrational 
number @ represented by an inlinite continuous fraction: 

(21). 

@ = s-OD lim a(') = l / [ N l i l / ( N , i  ...)...I. 0.7) 

~ 

4. Energy of the kink lattice 

The energy functional (21) may be written as 

In accordance with the concept set up in the previous section, the ground state of 
this functional under condition (23) with @ given by (3.4) or (3.7) can be viewed as 
a kink lattice with mean interkink distance equal to 

l/@ ~ l / @ "  = NI f @, ( 4 4  
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where 

(4.3) 
The main idea of any renormalization group is in essence that of a partial reduction 
of degrees of freedom. Here we want to describe the configurations in the FK model 
in tem of new variables-the positions of kinks along the chain-instead of the 
initial phase variables +j. Thus, we shall have @L variables instead of L for the 
chain of L sites. 

Therefore, we should invent in some way a new set of variables lLj, namely, kink 
coordinates (now j enumerates the kinks rather than the sites). Of course, the energy 
functional in terms of these new variables will contain not only the nearest-neighbour 
interactions but also the pair ones. Let us suppose, however, that, to find a ground- 
state configuration, it is possible to approximate the true energy functional by a pair 
one with nearest-neighbour interactions only: 

Let us consider the structure (not necessarily the stationay one) with all interkink 
distances beiig equal to some integer N :  

lltl = + t i N .  (4.5) 
Its energy per kink (or per N sites of the initial lattice) is just E l ( + , +  t N ) .  
Note that it is not a ground-state energy for Q, = 1 / N  but rather it corresponds to 
the ground state homogeneously shifted by +. In other words, the configuration of 
interest, J j ,  should be the minimal energy configuration of (4.1) under the restrictions 

N- I 
Jj = -+. 

j = O  

The condition (4.6) implies that the distances between neighbouring kinks are all 
equal to N .  'lb explain the condition (4.7), let us note that the homogeneous shift of 
the kink chain for one lattice spacing to the right corresponds simply to the change 
of variables as +j  -t q5- , ,  but after this equation (4.7) implies also the change + + + + 1.  Then the continuous change of + should result in the continuous 
homogeneous shift of kinks along the chain. The minus sign in (4.7) corresponds to 
the fact that the values of 4j are lowered when the kink chain is moving to the right 
If the configuration '$j is determined, then 

Performing analytical continuation to the real values of N one obtains the kink pair 

Now we should minimize the new form of the energy functional (4.4) under the 
energy +A. 
condition: 

(4.9) 
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It is natural to introduce the variables +jl), 

+j = N1j f bj 

V N Prigodin and A N Samukhin 

(1) 

with new mean phase difference CP,  

(+?j, - 4:)) = @* 

~l(+j?+$$) = U+j,+j+d. 

0 < CP1 < 4 
and new pair interaction e,, 

(4.10) 

(4.11) 

(4.12) 

5. Continuous approximation 

As a first step, we should minimize (4.1) under the conditions (4.6) and (4.7). lb 
satisfy condition (4.7). one can add the term f+j to Lo (f is the Lagrange variable) 
and minimize the energy functional with the pair interaction: 

Lu + f+j = f(+j+i - +j)' + (X/4rZ)11 - C O S ( ~ X + ~ ) ]  + f+j .  (5.1) 

The configuration of interest, 4j ,  should satisfy the following stationarity equations: 

2 d j  - Jj+, - 4j-l + (X/2n)sin(2n4j) + f = 0. ( 5 4  

Equation (4.7) establishes the relation between f and +. 
As X 5 1, the continuous approximation may be used m obtain the solution 

of equation (5.2). Replacing the discrete variable j by the continuous one I and 
4jtl + +j-l - 2+j by the second derivative +"(z) transforms equation (5.2) into 

4'' = (X /2*)  Sin(27r4) - f. (5.3) 

Tbis equation has no homogeneous periodic solution satisfying equation (4.6), if 
f $ 0. Hence f(+) = 0 in the continuous approximation. Then the solution of 
equation (5.3) is 

+(I) = t + (I/n)am((A'/*/k)(z - zU), k )  (5.4) . 

where am(y,k) is the elliptic amplitude function with argument y and modulus +. 
The integration constants k and I,, should be adjusted m satisfy conditions (4.6) and 
(4.7). 

The former case is satisfied if 

2 k K ( k )  = NX'I2 (5.5) 

where K ( k )  is the complete elliptic integral of the first kind. As for condition (4.7), 
one can simply use zu instead of +. Indeed, it is obvious that: (i) +(I,,) is an 
increasing function of zU, and (U) +(I,, + 1) = +(zu) + 1. Then one can use the xu 
variable instead of +. "%us, further let us denote + = r0. 
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Now we should evaluate sum (4.8) with Jj  = +(j), where +(z) is given by (5.4). 
The result is (see appendix) 

m 

L i ( d J , d J + + ) = & ( N )  - D m ( N ) m ( 2 r m + )  (5.6) 
m=l 

where 

1 sin( r n I N )  
M N )  = + z c  n=l [ l+cosh[(Zn-l)aj  +( r n / N  ) 2 l + w s h ( Z n a )  

(5.7) 

x a l / { cosh(mNa)  +cosh[(" - 2n)a]}I (5.8) 

a = r K ' / K .  (5.9) 

Equations (5.6)-(5.9) were obtained in the next-to-continuous approximation, 
ie. the condition X << 1 was used. They may be simplified in the limiting cases 
NXIIZ < 1 and NX1I2 > 1. In the former case equation (5.5) may be solved 
approximately as 

K N r / 2  k N N X 1 1 2 / r  K' = K(k') N log(4 /k)  N l og (4r /NX' lZ) .  

(5.10) 

(5.11) 

Substituting (5.10) into (5.9) we have 

a N log(16rz /XN2)  >> 1 .  

Then equations (5.7) and (5.8) are transformed to 

Eo(N)  N i N  

D , ( N )  N Am(N)(XNZ/16rz)"  

8 " - I  sin " ( r n / N )  - 
A m ( N ) = 4 m - -  

rZ9n S=l 

(5.12) 

(5.13) 

(5.14) 

In the opposite case NX1IZ >> 1 the solution of equation (5.5) is 

K N N X i / 2 / 2  k N 1 K' N r / 2 .  (5.15) 

Here we have 

a N rZ/NX'12 << 1 

but 

Na % r Z / X ' J 2  >> 1. 

(5.16) 

(5.17) 
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Owing m condition (5.16) one can replace the sums in (5.7) and (5.8) by integrak. 
The latter can be easily evaluated taking into account condition (5.17). Enally we 
have 

C,,(N) E 2X'1'/7r2 + (8A'/2/7r2)exp(-NX'~z) (5.18) 

D,(N) N A,(c~)exp(-rr~m/X'/~) (5.19) 

V N Rigd in  and A N Samukhin 

with 

A,(m)= lim A m ( N ) = 4 m - -  (5.20) 
N-m 

One can conclude from (5.13) and (5.19) that, assuming X < 1 (a necessary 
condition to use the continuous approximation), all the terms except the tirst one 
with m = 1 may be abandoned in (5.6). 

6. Renonnalizatioa transformation 

'lb obtain the pair kink interaction (including the interaction with the 
lattice), one should perform analytic continuation on the N = +, - +2 variable from 
its integer values to the real axis. %king into account the considerations given at the 
end of the previous section, we have 

h ( + i > d d  = 4414 -+z) - DI($I - + z ) ~ W 7 r + i ) .  (6.1) 

If we restrict ourselves to the case of small lattice-kinks interaction D,, then it is 
passible m replace 

+j+1-  +j + W j + ,  - + j )  = 1/@, 6 2 )  

in the argument of D,. Moreover, one can expand - G j )  near the mean 
value l/cP,, restricting the expansion to the quadratic term. Then one may reproduce 
the initial form (2.1) of the energy functional after its renormalization in order to set 
the mefBcient before the quadratic term in the expansion of CO equal to $. Omitting 
the irrelevant terms from the constant and linear paw of the Eo expansion and 
introducing the new variables #) through (4.10), we finally have 

(6.3) .E,({&)H = [ ~ l w / @ o ) l - l , %  = E-M+j (1) ,+ j+1 (1) ) 

-h(+l,h) = $(h-+l)' +(A,/4rZ)[1- ms(2~&)1 (6.4) 

A, = 4nZIDI(@01)/E~(@o')1. (6.5) 

j 

where 
.. 

Here Dl(@;') and E,(cP;') are defined through the analytic continuation of 
equations (5.1) and (5.8) respectively. If K a, using equations (5.12) and 
(5.13), one may obtain the following expression for A,: 

XI = (47rz/@3A,( l / @ , ) ( X , / 1 6 ~ ~ @ ~ ) ' ~ " ' .  (6.6) 
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In the opposite case 1 > Ai" > @, we have from equations (5.18), (5.19) and (6.5): 

A, N ( X ~ / ~ X ~ ~ ~ ) A , ( C C ) B [ ~ ( X ~ / ~ / @ ,  - r Z / A : / ' ) .  (6.7) 
The problem of the ground state of the energy functional (2.1) contains two 

independent parameters, A, and Using the technique developed here, one 
can transform the initial values of these parameters into the equivalent ones A, 
and @, with A,(A,,@,) given by equation (6.5) or by equations (6.6) or (6.7) in 
the corresponding limiting cases. The new mean phase difference @, is given by 
equation (4.14), or 

@ I  = l l / @ u  - Int(l/@u + ;)I (6.8) 
where Int I denotes the integer part of I. 

7. Fixed cycles and k e d  points 

The critical values A,(@) correspond to fixed points or fixed cycles of the 
renormalization transformation in (A ,@)  space. Note that the sequence of 
transformation Qj(GjW1) (6.8) corresponds to continuous fraction expansion (3.7) 
of the initial value of the mean phase difference @, @. After s steps of the 
renormalization transformation we obtain the new mean phase difference equal to 
the sth-order remainder (4.3) of the continuous fraction (3.7). 

To organize the cyclic sequence @*, one should initially have a periodic continuous 
fraction a,, ie. the one with the periodic sequence of denominators N,. It is well 
known that such a continuous fraction represents a quadratic irrationality [21], i.e. the 
root of a quadratic equation with integer coefficients. Hence explicit results about 
the values of A, and the critical behaviour of the system are available within the 
framework of the renormalization group suggested here for quadratic irrationalities 

The simplest case of the fixed cycle is the fixed point. It corresponds to the value 
of the mean phase difference @$, satisfying the equation 

only. 

@% = 1/( N f @%) ( 7 4  

. where N is integer, N 2 2 for the plus sign and N > 2 for the minus. Then A,( @) 
may be obtained bom equation (6.5) with A, = A, = A,. Using the simplified forms 
(6.6) or (6.7) of equation (6.5), one obtains for A,, respectively, either 

A,(@) = 16rz@(2t3")/(L-")/[A~(1/@)/4]"1(1-~) (7-2) 

A,(@) = rZ@ - ~@3/21~g[AL(1/@)/251.@5/2]. 

or 

(7.3) 

This fixed point is an unstable one. For A, > A, the sequence A, --t CO. This 
means a pinned ground-state configuration. If A < A,, then A, -+ 0 and the ground 
state is unpinned. 

To compare the results of our renormalization group and the exact ones obtained 
by straightforward numerical calculations, let us choose @ = 1 - G, where G = 
(& - 1)/2 is the golden mean value. Owing to the quadratic nature of the pair 
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interaction in (Zl), A,(@) = A,(C). @ should obey equation (7.1) with N = 3 and 
the minus sign, i.e. 

V N higodin and A N Samukhin 

Q, = (3-  d ) / 2  = 1/(3 - 1/(3 - ...) ...) = Q,;. (7.4) 

Substituting (7.4) into (7.2), one obtains A, N 1.32. The numerical methods give a 
critical value about one-and-a-half times lower, A, N 0.902 [22] (let us note that our 
definition of X differs from Aubry‘s by the factor of r2/Z). 

The method suggested here is somewhat similar to the real-space renormalization- 
group approach [U]. The transition from initial phase variables to kink coordinates 
means that one retains some part of the initial degrees of freedom whose number 
is related to the number of the initial ones as @. In other words, the length scale 
increases as l/@. The index of correlation length (i.e. the inverse of Lyapunov 
exponent) is defined through the behaviour of A,(A,) transformation in the vicinity 
of A, as [MI: 

= log(l/@.)/log(aX,/ax,)Ix,,~. = 1. (7.5) 
Here we take the A,(A,) dependence from the simplified formula (6.6). The 
numerical methods give the wlue Y = 0.9874625 [ZO], Le. a value very close to 
unity. The value U = 1 appears due to the dependence 

A,,, - A y -  (7.6) 
in approximate formula (6.6). 

8. Conclusions 

An approach suggested here seems to be somewhat qualitative, rather unsuitable 
for obtaining exact quantitative results about critical points and critical behaviour 
in Frenkel-Kontorova-like models. Surprisingly, the discrepancy between our 
renormalization-group results and the ones of numerical calculations appeared to 
be not as large as one may expect taking into account the very coarse character 
of uncontrollable approximations we have used here. The most doubtful is 
assumption (4.6) about the pair interaction of nearest-neighbour kinks only in the 
effective free-energy functional. The only intuitive arguments we can suggest in 
defence of this assumption is that systems with a b i t e  range of interaction (the 
range of the kink interaction equal to in the FK model) are govemed on 
the macroscopic scale by two main parameters: the effective compressibility and the 
parameter of ‘substrate potential’. The latter may be extracted from the pinning 
strengths of the integer commensurate configurations, where the pinning force is 
maximal relative to the other neighbouring ground-state ones. Thus, the only relevant 
quantity should be the dimensionless (i.e. related to the compressibility) coupling to 
the periodic potential. 
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Appendix 

Substituting 6, = 4 ( j )  from (5.4) into (5.1) and then into (4.8) one obtains 

where cn is the Jacnbi elliptic mine function. The following series expansions are 
useful [U]: 

a m ( q z ) = i C ;  1 sin(2PnzlN) 
n cosh(na) 

P ms[2n(n - 1/2)z/N] 
n wsh[(n- 1/2)a] . 

The undefined limits of summation mean the ones from -cm to +ca. CY iS given by 
equation (5.9). Relation (5.5) has been taken into a w u n t  in equations (AZ) and 
(A3). Substituting (A2) and (A3) into (Al), we have 

m [ 2 d n  - - +)/NI 
cosh[(n - I)a] + cnsh[(n + I - l )a ]  + 

After the summation on j only terms with n - I = m N ,  m being integer, survive. 
Then after some simple transformations, 

1 Sin( ? r n / N )  
1 + mh[(2n - 1)a] ( m / N  ) Z l + m s h ( 2 n a )  

1 L(+,+ + N) = N E  
n 

2 *  1 
+ m=l cns(2Pm')C n (cnsh(mNcY) + cnsh[(mN -2n  +. l )a]  

1 sin2(nn/N) 1 -_  
?rm P n / N  m h ( m N a )  + cosh[(" - 2n)aI 

mking into acmunt the following formula: 

(A61 
m N  

sinh(mNa) 
- - 1 

E cosh(mNa) +cnsh[(mN - 2n + 1)a] 
n 

one can easily approach equations (5.6)-(5.8). 
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